ESTEEM 11 TOTAL INTEGRATED SOLUTION INPUT - MODEL

V V V V V

INPUT - MODEL MESH GENERATION - ANALYSIS DESIGN - DETAILING BIM - QUANTITY TAKEOFF

Esteem 3D model view from Input

INPUT & MODEL

- 2D Key plan, Elevation Input and 3D Model view
- Input Grid(G), Slab(S), Beam(B), Column(C), Wall(W), Brick-wall(K) object and set custom properties such as material, size, element drop Note: Grid, Slab, Beam, Column, Wall, Brick-wall object will be abbreviated as G, S, B, C, W and K respectively
- Toggle input object Slab(S), Beam(B), Column(C), Wall(W), Brick-wall(K), Loadings(L) and All input objects using short-cut key of S, B, C, W, K, L and A respectively
- Grid bounded objects, input objects of S, B, C and W are bound to grids
- Break or merge structural objects of B, S and W at intersecting grids
- Auto generation of input objects slab(bound by B and W), beam(between C) and column(at G or B intersection) under respective input mode
- Command-driven icon to change or delete of same type of input data(G, S, B, C, W and K) selected by individual click or window drag-select
- Highlighting of input data(G, S, B, C, W) connected to selected grids and group delete them all with 'Delete' key
- Input point(P), uniform distributed line(U), general-variable line(V), area(E), patch(H) and brick-wall(R) loads to respective objects of slab(P,U,E,R,H), beam(P,U,V,R), column(P) and wall(P,V)

- Input circular(I), rectangular(T) and polygonal(O) openings to respective objects of slab(I, T, O), beam(I, T), column(I, T, O), wall(T)
- Import key plan from another Esteem project
- · Copy existing key plan to multiple other floors
- Overlay key plan object(S, B, C, W) using short-cut key of S, B, C, W(Ctrl+Shift+) and lower(Ctrl+) to toggle for upper and lower floors respectively on current key plan input
- Import dwg/dxf 2D drawing files as a tracing background
- Auto assign entities in dwg layers as Grid, Beam, Column, Slab, Wall, Brick-wall object
- Import dwg/dxf 2d drawings and use them as a tracing background and to auto assign dwg entities as input objects
- Import, trace and auto assign dwg entities in one-screen tracing and input
- Auto change to object input mode by double-clicking it when its(G, S, B, C, W) object shape appear

Import dwg/dxf 2d drawings and use them as a tracing background and to auto assign dwg entities as input objects in Esteem 11

INPUT & MODEL

ESTEEM 11 NEW FEATURES

emo		2 3-1					L C D	18				2 2	
4b					SC1		C1 0p: 125	1501				(-3A/)	
3b													
2b 1b			Designation	M hada	h mm	h mm		T		1	have and	1	
gb			1016v205v497	IVI, Kg/m	n, mm	D, mm	t, mm	1, mm	r, mm	1020000	1yy, cm	J, CM	A, CM
Foundation		1	1010X303X467	400.0	1030.1	306.3	30	34.1	20	010000	20700	4500	020
		2	1010x305x437	430.9	1025.9	305.4	20.9	49	30	910000	23500	3190	500
		3	1016x305x393	392.7	1016	303	24.4	43.9	30	808000	20500	2330	500
		4	1016x305x349	349.4	1008.1	302	21.1	40	30	723000	18500	1720	445
		5	1016x305x314	314.3	1000	300	19.1	35.9	30	644000	16200	1260	400
		6	1016x305x272	272.3	990.1	300	16.5	31	30	554000	14000	835	347
		7	1016x305x249	248.7	980.2	300	16.5	26	30	481000	11800	582	317
		8	1016x305x222	222	970.3	300	16	21.1	30	408000	9550	390	283
		9	914x419x388	388	921	420.5	21.4	36.6	24.1	720000	45400	1730	494
		10	914x419x343	343.3	911.8	418.5	19.4	32	24.1	626000	39200	1190	437
t Viewer	- I V	11	914x305x289	289.1	926.6	307.7	19.5	32	19.1	504000	15600	926	368
at viewei	• + ^	12	914x305x253	253.4	918.4	305.5	17.3	27.9	19.1	436000	13300	626	323
ne	Steel	13	914x305x224	224.2	910.4	304.1	15.9	23.9	19.1	376000	11200	422	286
ction Type	Section	14	914x305x201	200.9	903	303.3	15.1	20.2	19.1	325000	9420	291	256
ction Size	I 203x203x52	15	838x292x226	226.5	850.9	293.8	16.1	26.8	17.8	340000	11400	514	289
kg/m	52.00	16	838x292x194	193.8	840.7	292.4	14.7	21.7	17.8	279000	9070	306	247
mm	206.2	17	838x292x176	175.9	834.9	291.7	14	18.8	17.8	246000	7800	221	224
mm	5260	19	762x267x197	196.8	769.8	268	15.6	25.4	16.5	240000	8180	404	251
(cm ⁴	1780	10	762×267×172	172	763.0	266 7	14.2	21.6	16.5	205000	6250	267	201
cm ⁴	31.8	19	762x267x1/3	1/5	702.2	200.7	12.0	17.5	16.5	169000	5460	150	107
cm ²	66.3	20	702X207X147	140.9	754	203.2	12.0	17.5	10.5	105000	3400	135	107
nm	7.9	21	762X267X134	133.9	750	264.4	12	15.5	10.5	151000	4790	119	1/1
mm	12.5	22	686X254X170	1/0.2	692.9	255.8	14.5	23.7	15.2	170000	6630	308	21/
mm sior Length mm	IU.Z {Default}	23	686x254x152	152.4	687.5	254.5	13.2	21	15.2	150000	5780	220	194
nor Length, mm	{Default}	24	686x254x140	140.1	683.5	253.7	12.4	19	15.2	136000	5180	169	178
eneral		25	686x254x125	125.2	677.9	253	11.7	16.2	15.2	118000	4380	116	159
ark Position	0.5	I	🕨 🕨 UB (BS) 🖉 U	C (BS) 🖌 UC (I	Perwaja) 🖌 C	HS (BS) 🖌 RH	IS (BS) 🖌 S	HS (BS) 🖌					•
op	0												
prsion Reduction	🗹 Irue 🗸												OK

Choose from list of standard steel section sizes. Steel section size can also be user defined

MATERIAL

- Reinforced Concrete for Beam, Slab, Wall, Column
- Steel Section for Beam and Column Member

Steel input for beam

Seismic simulation

Beam moment diagram

AUTO MESH GENERATION & 3D ANALYSIS

- Auto mesh generation of model and Finite Element Analysis
- Reinforced concrete and steel section analysis
- Meshing and Analysis for Floor Key Plan in sub-frame(2D)
- Meshing and Analysis for All Floor Key Plans in Full 3D Model(3D)
- Beam pattern loading analysis in 2D
- Wind and Notional Load Analysis in 3D
- Ritz or Eigenvalue Seismic Dynamic Analysis in 3D
- Seismic Modal Response Spectrum (EC8, EC8 Malaysia & Singapore or User Defined)
- Seismic Animation in 3D Analysis Display
- P-Delta Analysis
- Stage Construction Analysis
- Moment, shear, torsion, displacement, loading, forces diagram for Beam and Column
- Moment, shear, displacement, top and bottom steel area contour in X and Y direction for Floor Slab in 2D
- Moment, shear, diaphragm stress, displacement, top and bottom steel area contour in X and Y direction for Transfer Floor Slab and Wall in 3D

Faster Beam Free Nodes Checking for Meshing
Simplified MRSA biaxial load combination feature which reduce seismic design to only 8 biaxial envelope combinations.

RC Shear Wall moment contour

ESTEEM 11 NEW FEATURES

gb Beam Result: gb			gb Beam Res	sult:gb									SteelCapacit	ty [Compatibi	ility Mode] - ١	Word		
Floor: gb 🗸 🚺 📄 🌍 3D view Beam :	gb4(I 203x203x52) V Re-Design		Floor : gb	▼ < >	🌍 3D view E	3eam : gb4(I 203x203x52)	~ •	Re-I	Design	nsert De	sign Layout	References	Mailings	Review	View He	elp 🖓		
Steel Section gb4(I 203x203x52) Capacity Check Assumptions and scope: Steel Section gb4(I 203x203x52), (Section 1) Capacity Check Summary Table for all load combinations	Deflection Check Deflection, δ = 0 mm Deflection Limit = L _{cry} /200 = 5 000mm/200 = 25 mm	Project Parameter/Design (Steel)/Deflection Limit	Steel Section Status: Passed! Assumptions	1 gb4(I 203x2(s and scope:)3x52) Capacity (<u>Check</u>				Steel Sec Status: Pas	tion gb4(I 203x sed! ions and scope	203x52) Ca	pacity Che	<u>ck</u>				
	δ Check = abs(δ) ≤ Deflection Limit = abs(0mm) (0mm) ≤ 25mm = 0 > OK! Moment Capacity Reduction due to Shear and Torsion $\tau_i = T_{id} \times max(t_{j}, t_w) / J = 0kNm \times max(12.5mm, 7.9mm) / 31.8cm4 = 0 N/mm2$ $V_{ply,trid} = V_{ply,Rd} \{1 - [\tau_i \times 3^{36} \cdot \gamma_{M0}) / (1.25 \times f_{yw})]\}^{36} = 254.5kN \times \{1 - [0N/mm2 \times 3^{36} \times 1 / (1.25 \times 235N/mm2)]\}^{36} = 254.5 kN$ Reduce Major Moment Capacity = 0.5 × $V_{ply,trid} \le V_{y,Ed} = 0.5 \times 254.5kN$ (127.3kN) > 2.214kN = 127.3 > No reduction	EC3.1.1 6.2.8(2)	1. Check is for a difference in sh 2. Plastic section 3. Moment shap 4. Yield strengt only reduces the 5. Critical mom 6. Kzy is calcula 7. Warning tors	an unstiffened see ear) is considered n modulus uses ti pe for 2D analysis hreduction due t e web capacity. ent, Mcr does no ated assuming su jon is considered	ction. Therefore for we he same angle as the e is conservatively bas o shear and torsion is i t consider unstable los sceptible to torsional of assuming both ends a	eb buckling, case c (with lastic section modulus. ed upon the absolute en applied to the entire mor ads. deformations and C_mL' re not restraint and a po	hout stiffener and velop. ment capacity exc T uses same valu int toroue is appli	l only consideri cept for I sectio ie as Cmy. ied.	ng section shear - no n major capacity whi	t 1. Check is difference i 2. Plastic se 3. Moment ch 4. Yield str only reduce 5. Critical r 6. Kzy is ca 7. Warning	for an unstiffened n shear) is consider ection modulus use shape for 2D analy ength reduction du es the web capacity noment, Mcr does alculated assuming torsion is consider	section. Theref red. s the same angl rsis is conservat e to shear and to not consider un susceptible to t d assuming bo	fore for web by le as the elastin tively based up corsion is appli- nstable loads. torsional defor-	uckling, case c section mod pon the absol ied to the enti rmations and	c (without stif dulus. lute envelop. ire moment cap C_mLT uses s	fener and of pacity excessame value		
Steel Member Buckling Factors Steel Member Buckling Factors Steel Properties Steel Section Classification Shear Buckling and Flange Buckling Check Web Buckling Capacity Steel Section Capacity	$\begin{split} M_{y,v,Rd} &= 0.5 \times V_{ply,Trd} \leq V_{y,Ed} \to M_{c,y,Rd} = 0.5 \times 254.5 \text{kN} \ (127.3 \text{kN}) > 2.214 \text{kN} = 133.4 \text{ kNm} \\ \text{Reduce Minor Moment Capacity} = 0.5 \times V_{pl,z,Trd} \leq V_{z,Ed} = 0.5 \times 693 \text{kN} \ (346.5 \text{kN}) > 0 \text{kN} = 346.5 \\ \dots > \text{No reduction} \\ M_{z,v,Rd} = 0.5 \times V_{pl,y,Trd} \leq V_{y,Ed} \to M_{c,z,Rd} = 0.5 \times 254.5 \text{kN} \ (127.3 \text{kN}) > 2.214 \text{kN} = 62.1 \text{ kNm} \end{split}$	EC3-1 Eq6.30 EC3.1.1 6.2.8(2) EC3-1 Eq6.29	Steel Section gb4(I 203x203x52), (Section 1) Capacity Check Passed in Flange Buckling Check Passed in Shear Buckling Check Passed in Major Shear Check Passed in Socion Ratio Passed in Section Ratio Passed in Section Ratio 6.61 Passed in Member Ratio 6.62 Passed in Jorsion Check Passed in Torsion ratio Check Passed in Torsion ratio check Passed in Torsion ratio check						Steel Section gb4(I 203x203x52), (Section 1) Capacity Check Passed in Flange Buckling Check Passed in Shear Buckling Check Passed in Shear Shear Check Passed in Schercheck Passed in Schercheck Passed in Schercheck Passed in Schercheck Passed in Section Ratio Passed in Member Ratio 6.61 Passed in Member Ratio 6.62 Passed in Axial Torsion Check Passed in Torsion nutio check Passed in Torsion buckling ratio check					ie is applie				
	Major Shear Check = $abs(V_{y,k,\theta}) \le min(V_{ply,tr,\theta}, F_{r,\theta}) = abs(2.214kN) (2.214kN) \le min(254.5kN, 210.8kN) (210.8kN) = 2.214, 1.857, 1.5, 1.143, 0.786, 0.429, 0.0714, 1, 1.357, 1.714, 2.071, 2.428 > 0K!Section Moment, Shear, Axial Checks$		Max deflection is: Deflection Limit = L _{cry} /200 = 5 000mm / 200 = 25 mm Project Parameter/Design (Steel)/Deflection Limit Summary Table for all load combinations Summary Table for all load combinations						Max deflec Deflection Summar	tion is: Limit = L _{cr.y} / 200 v Table for all	= 5 000mm / 3	200 = 25 mm	mm					
	Major Moment Check = $abs(M_{y,kd}) \le M_{y,y,Rd}$ = $abs(0.002555 \times 10^{\circ} \text{ Knm})$ (0.002585 × 10 ⁻⁴ Knm) ≤ 133.4kNm = 0.002355 × 10 ³ , 1.018, 1.857, 2.517, 3, 3.303, 3.428, 3.428, 2.839, 2.071, 1.125, 0.003677 × 10 ³ $\ge OK$!	:	Load Comb Index	Pass Ratio tatus 6.61	Ratio Section 6.62 Ratio	Torsion Torsion Section Buckling Ratio Ratio	Kyy K	Kzz Kyz	Kzy	Load Comb Index	Pass Ration Status 6.61	o Ratio 6.62	Section Ratio	Forsion To Section Bu Ratio R	ckling Ky Ratio	y Kz		
	$\begin{array}{l} \textbf{Minor Moment Check} = abs(M_{x,Ed}) \leq M_{x,y,Rd} = abs(0kNm) \ (0kNm) \leq 62.1kNm = 0 \dots \gg 0K' \\ \textbf{Major Shear Check} = abs(V_{y,Ed}) \leq \min(V_{ply,Trop} F_{rd}) = abs(2.214kN) \ (2.214kN) \leq \min(254.5kN, 210.8kN) \ (210.8kN) \ = 2.214, 1.857, 1.5, 1.143, 0.786, 0.429, 0.0714, 1, 1.357, 1.714, 2.071, 2.428 \gg 0K' \\ \textbf{Major Shear Check} = abs(V_{y,Ed}) \leq V_{x,d} \leq V$		1 F 2 F 3 F 4 F	Pass Pass Pass Pass Pass Pass Pass Pass			0.788 0.788 0.788 0.788 0.787 0.787	1 0.6 1 0.6 0.4 0.24 0.4 0.24	1 1 1 1	1 2 3 4	Pass Pass Pass Pass Pass				0.78 0.78 0.78 0.78	18 1 38 1 38 0.4 87 0.5		
	Minor Shear Check = $abs(V_{x,kd}) \le V_{p x,Trd} = abs(0kN)$ (0kN) $\le 693kN = 0 \dots \ge 0K!$ Axial Torsion Check = $abs(N_{kd}) \le N_{b,Rd,T} = abs(0kN)$ (0kN) $\le 1 \ 180kN = 0 \dots \ge 0K!$		6 F	Pass Pass			0.788 0 0.788 0	0.4 0.24 0.4 0.24	1 1	5 6	Pass Pass				0.78	8 0.4 88 0.4		

DESIGN

- Complying to BS8110 and EC2 Code of Practices
- Full Design for Slab, Beam, Column and Wall
- Reinforced Concrete Design
- Steel Member Design Check
- Conventional, Stage Construction, P-Delta, Seismic Design
- Foundation Design for Pile and Pad
- Design Calculation Report
- Export out Design Calculation Report to Rich Text Format file to be viewed in MS Word

Steel section deflection check calculation report

- Slab design based on band-width contour cut
- · Column and wall design based on FE end restraint
- Slab design based on band-width contour cut

- Auto fix Beam End Release on RC Wall
- Flat Slab Design

Steel section check report exported to MS Word

ESTEEM 11 NEW FEATURES

• Steel Member Design Check from Class 1 to Class 4 complying to EC3 • Slab Displacement contour based on non-reduced sub-frame stiffness • Pile offset from edge of core wall to increase capacity of foundation Column and Wall Design with Reduced Subframe Moment • Wall framing beam design is made obsolete and unnecessary for RC Wall • Multi-section beam deflection checking using weighed effective depth • Beam end/inner span deflection check is based on its fixity to RC Wall end

Foundation design detailing with pile offset feature

DETAILING

- Auto-Drafting Design Detailing to meet Design Requirements
- Auto arrange beam and slab detailing cuts to fit imported Title Block drawing
- Detailing Schedule Table for RC Wall and Pile & Pad Foundation
- Export out 2D detailing to DXF or DWG file

- if it is >= 2%
- Column & Wall mark plan in detailing schedule table
- detailing plan
- Flat Slab Detailing

Flat Slab Detailing

ESTEEM 11 NEW FEATURES

• Wall link detailing is added in schedule table and needed for every vertical rebar

• Option to show only support/necessary grids for 'cleaner' grids and dimensions in

Autodesk Revit import of IFC2x3 model exported from Esteem 11

BIM INTEROPERABILITY

- Export Esteem Floor key plans to dxf, dwg formats (Latest Autodesk 2021-2023 dxf/dwg compatibility)
- Import dxf/dwg key plans into Esteem to be used as tracing or auto assign drawing entities as Esteem input object in dwg
- Export Esteem 3D models to IFC2x3, 3D DXF
- Esteem RC physical model BIM interoperability with Autodesk Revit
- (Latest Revit 2021-2023 compatibility)
- Export Esteem model to Esteem Viewer which is a free software from Esteem to only
- view floor key plans and 3D model
- · Backward and Forward Compatibility of Esteem project files

- IFC2x3 geometric export of Esteem model including pile and pad foundation Autodesk Revit 2021/2022/2023 and add-in link to provide
- import/export compatibility of RC structure model
- Autocad 2021/2022/2023 import and export compatible for dwg/dxf files
- Forward Compatibility:- Older software versions from Esteem 11 onwards
- can open Esteem model created by newer software versions

Autocad import of 3D DXF model exported from Esteem 11

ESTEEM 11 NEW FEATURES

÷		Slanting Beam Colu	mn RC Wall Pad	Pile Project			
÷		Roo	,	Concrete, m ³	Lean Concrete, m ³	Formwork, m ²	Side Formwork, m ²
		3ь		0.521	0.000	4.170	0.000
Ŧ		2ь		13.420	0.000	101.584	1.333
+		1b		35.156	0.000	264.676	1.142
Ξ		gb		35.156	0.000	264.676	1.142
		Mark	Thickness, mm	Concrete, m ³	Lean Concrete, m ³	Formwork, m ²	Side Formwork, m ²
		FS1	125	0.521	0.000	4.170	0.000
		FS2	125	1.875	0.000	15.000	0.000
		FS3	125	2.963	0.000	23.700	0.000
		FS4	125	1.750	0.000	14.000	0.000
		FS5	125	0.713	0.000	5.700	0.000
		FS6	125	2.765	0.000	22.120	0.000
		FS7	125	1.767	0.000	14.136	0.000
		FS8	125	1.806	0.000	14.451	0.000
		FS9	125	0.556	0.000	4.451	0.317
		FS10	125	0.586	0.000	4.686	0.254
		FS11	125	0.814	0.000	6.511	0.000
		FS12	125	0.645	0.000	5.162	0.000
		FS13	125	0.272	0.000	2.178	0.254
		FS14	125	1.525	0.000	12.202	0.000
		FS15	200	3.102	0.000	15.510	0.000
		FS16	125	1.412	0.000	11.298	0.000
		FS18	125	1.012	0.000	8.092	0.317
	Г	FS19	200	2.421	0.000	12.104	0.000
		FS20	125	3.300	0.000	26.400	0.000
		FS21	125	2.306	0.000	18.445	0.000
		FS22	125	3.045	0.000	24.360	0.000
		Proiec	t	84.253	0.000	635.106	3.617

					Slab [Co	mpatil ^{y (}	÷		Slab [Corr	ipatibility Mode] - Word	
e	Home Insert	Page Layout Fo	ormulas Data I	Review View	Help Q Tel	Home	Insert Design La	yout References	s Mailings	Review View Help	Q Tell me what you want to
. v						- Tin	nes New Roma + 10 + A	A Aa - 🤌	i= * i= * 1	?≓ ~ ≝≣ එ≣ 2↓ ¶	AaBbCcI AaBbCcI Aa
5 00	Ari	al 🔹 1	0 • A A = =	= _ % ~	ab Wrap Text	e B	I U ~ abc X ₂ X ²) - 🎽 - 🗛 -		🛙 江 - 🖄 - 🖾 -	۱ Normal ۱۱ No Spac H
- E	Copy ~						Font	2	. P	aragraph	Styles
sie , 💰	Eormat Painter B	I <u>U</u> ~ <u></u> ~	🆄 × A × ≡ ₹	= = += +=	🚊 Merge & Center 💌	100				aragraphi	syles
	ronnacraincer						Slab Formwork	and Concret	e Costing Te	bles	
Clip	board 😼	Font	5	Alignn	ient T		Siab Formworr		e costing 1a	DICS	
		f _x Compa	ny Name :				Concrete Volume	and Cost Grade	Volume (m ³)	Raw (RM)	Placement (RM)
			-	-	-		26	30	0.521	78.15	130.25
A	В	С	D	E	F	G	1b	30	13.420	2,013.00	3,355.00
Mari	k Thickness, mr	Concrete, m ³	Lean Concrete, m ³	Formwork, m ²	Side Formwork, m ²		gb	30	35.156	5,273.40	8,789.00
FS1	1 125	0.521	0.000	4.170	0.000		100		49.097	7,304.33	12,274.23
R2	-	0.000	0.000	0.000	0.000		Lean Concrete Vo	lume and Cost			
R3		0.000	0.000	0.000	0.000		Floor	Lean Concrete	(m ³)	Raw (RM)	Placement (RM)
113		0.000	0.000	0.000	0.000		2b	0.000		0.00	0.00
R4	-	0.000	0.000	0.000	0.000		ap 10	0.000		0.00	0.00
R11	1 -	0.000	0.000	0.000	0.000		Total	0.000		0.00	0.00
R15	5 -	0.000	0.000	0.000	0.000			1.0			
	Floor : 2b	0.521	0.000	4.170	0.000		Formwork Area a	nd Cost Formwork Area	a (m ²)	Raw (RM)	Placement (RM)
ES1	1 125	0.521	0.000	4 170	0.000		2b	4.170	. (83.40	125.10
507	1 125	0.521	0.000	4.000	0.000		1b	102.917		2,058.34	3,087.51
FS7	/ 125	0.586	0.000	4.686	0.254		gb Tatal	265.818		5,316.36	7,974.54
FS9	9 200	0.890	0.000	4.451	0.508		Total	372.903		7,438.10	11,187.15
FS10	0 125	0.284	0.000	2.270	0.254						
ES11	1 125	0.837	0.000	6 693	0.000						
ES12	2 200	1.032	0.000	5 162	0.000		Slab Reinforcer	nent Costing	Tables		
5040	2 200	1.032	0.000	3.102	0.000						
F513	3 125	1./91	0.000	14.325	0.000		Bottom Bar and C	ost			
	4 125	1.549	0.000	12.392	0.000		Floor	Diameter	Weight (kg)	Raw (RM)	Placement (RM)
FS14							1 11	T10	40.267	80.53	100.67
FS14 FS15	5 125	1.969	0.000	15.752	0.000		20 1b	T10	729 655	1 459 31	1 824 14
FS14 FS15 FS16	5 125 6 125	1.969 1.012	0.000	15.752 8.092	0.000		1b gb	T10 T10	729.655 1,800.565	1,459.31 3,601.13	1,824.14 4,501.41
FS14 FS15 FS16	5 125 6 125 9 125	1.969 1.012	0.000	15.752 8.092	0.000		1b gb Tota	T10 T10	729.655 1,800.565 2,570.486	1,459.31 3,601.13 5,140.97	1,824.14 4,501.41 6,426.22
FS14 FS15 FS16 FS18	5 125 6 125 8 125	1.969 1.012 1.412	0.000 0.000 0.000	15.752 8.092 11.298	0.000 0.317 0.000		1b gb Tota	T10 T10	729.655 1,800.565 2,570.486	1,459.31 3,601.13 5,140.97	1,824.14 4,501.41 6,426.22
FS14 FS15 FS16 FS18 FS20	5 125 6 125 8 125 0 125	1.969 1.012 1.412 1.537	0.000 0.000 0.000 0.000	15.752 8.092 11.298 12.293	0.000 0.317 0.000 0.000		1b gb Top Bar (Middle -	T10 T10 I Distribution) a	729.655 1,800.565 2,570.486 and Cost Weight (kg)	1,459.31 3,601.13 5,140.97 Raw (RM)	1,824.14 4,501.41 6,426.22
FS14 FS15 FS16 FS18 FS20 R2	5 125 6 125 8 125 0 125 9 -	1.969 1.012 1.412 1.537 0.000	0.000 0.000 0.000 0.000 0.000	15.752 8.092 11.298 12.293 0.000	0.000 0.317 0.000 0.000 0.000		1b gb Tota Top Bar (Middle Floor 2b	T10 T10 • Distribution) a Diameter T10	729.655 1,800.565 2,570.486 and Cost Weight (kg) 14.534	1,459.31 3,601.13 5,140.97 Raw (RM) 29.07	1,824.14 4,501.41 6,426.22 Placement (RM) 36.34
FS14 FS15 FS16 FS18 FS20 R2 R3	5 125 6 125 8 125 0 125 9 -	1.969 1.012 1.412 1.537 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000	15.752 8.092 11.298 12.293 0.000 0.000	0.000 0.317 0.000 0.000 0.000 0.000		20 1b gb Tota Top Bar (Middle - Floor 2b 1b	T10 T10 I Distribution) a Diameter T10 T10	729.655 1,800.565 2,570.486 and Cost Weight (kg) 14.534 237.574	1,459.31 3,601.13 5,140.97 Raw (RM) 29.07 475.15	1,824.14 4,501.41 6,426.22 Placement (RM) 36.34 593.93
FS14 FS15 FS16 FS18 FS20 R2 R3 R4	5 125 6 125 8 125 0 125 - - -	1.969 1.012 1.412 1.537 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000	15.752 8.092 11.298 12.293 0.000 0.000 0.000	0.000 0.317 0.000 0.000 0.000 0.000 0.000		20 1b gb Tota Top Bar (Middle - Floor 2b 1b gb	T10 T10 I Distribution) a Diameter T10 T10 T10	729.655 1,800.565 2,570.486 and Cost Weight (kg) 14.534 237.574 576.802 828.910	1,459.31 3,601.13 5,140.97 29.07 475.15 1,153.60 1,657.82	1,324.14 4,501.41 6,426.22 Placement (RM) 36.34 593.93 1,442.00 2,022.27
FS14 FS15 FS16 FS18 FS20 R2 R3 R4	5 125 6 125 8 125 0 125 9 - 1 -	1.969 1.012 1.412 1.537 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000	15.752 8.092 11.298 12.293 0.000 0.000 0.000	0.000 0.317 0.000 0.000 0.000 0.000 0.000 0.000		20 1b gb Top Bar (Middle - Floor 2b 1b gb Tota	T10 T10 Distribution) a Diameter T10 T10 T10 T10	729.655 1,800.565 2,570.486 and Cost Weight (kg) 14.534 237.574 576.802 828.910	1,459.31 3,601.13 5,140.97 Raw (RM) 29.07 475.15 1,153.60 1,657.82	1,824.14 4,501.41 6,426.22 Placement (RM) 36.34 593.93 1,442.00 2,072.27
FS14 FS15 FS10 FS10 FS20 R2 R3 R4 R5	5 125 6 125 8 125 0 125 9 - 4 - 4 - 5 -	1.969 1.012 1.412 1.537 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	15.752 8.092 11.298 12.293 0.000 0.000 0.000 0.000	0.000 0.317 0.000 0.000 0.000 0.000 0.000 0.000		20 1b gb Tota Top Bar (Middle 2b 1b gb 1b gb Top Bar (Support	T10 T10 Distribution a Diameter T10 T10 T10 And Cost	729.655 1,800.565 2,570.486 and Cost Weight (kg) 14.534 237.574 576.802 828.910	1,459.31 3,601.13 5,140.97 29,07 475.15 1,153.60 1,657.82	1,824.14 4,501.41 6,426.22 Placement (RM) 36.34 593.93 1,442.00 2,072.27
FS14 FS15 FS16 FS18 FS20 R2 R3 R4 R5	5 125 6 125 8 125 0 125 - - - - - - -	1.969 1.012 1.412 1.537 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	15.752 8.092 11.298 12.293 0.000 0.000 0.000 0.000	0.000 0.317 0.000 0.000 0.000 0.000 0.000 0.000		20 1b gb Top Bar (Middle Floor 2b 1b gb Tota Top Bar (Support Floor	T10 T10 I Distribution) a Diameter T10 T10 T10 Output Diameter Diameter Diameter Diameter Diameter	729.655 1,800.565 2,570.486 and Cost Weight (kg) 14,534 237.574 576.802 828.910 Weight (kg)	1,459.31 3,601.13 5,140.97 Raw (RM) 29.07 475.15 1,153.60 1,657.82 Raw (RM)	1,824.14 4,501.41 6,426.22 Placement (RM) 36.34 593.93 1,442.00 2,072.27 Placement (RM)

Slab Concrete Foamwork Quantity Take-off

Slab Concrete Foamwork Export to MS Excel

QUANTITY TAKE-OFF

- Quantity take-off for Concrete & Foam-work, Steel Rebar, Mesh and Costing results for Slab, Beam, Column, Wall and Footing
- Export quantity take-off results to MS Word and Excel

Slab Costing Export to Word

ABOUT

ESTEEM INNOVATION SDN BHD was founded in 1994 with the goal of creating a total integrated solution and user friendly software for structural design consultants to model, analyze and design reinforced concrete buildings with all its detailing fully generated to meet design requirements such as the code of practices, safety, and economical design

Founded and based in Malaysia, **ESTEEM SOFTWARE** has over 3,200 copies of license in Malaysia and is being used heavily by many local Malaysia private engineering firms, government organizations and universities to aid in the design of real construction projects locally.

ESTEEM SOFTWARE is also being used in overseas market such as Singapore, Brunei, Sri Lanka, Qatar, Australia for the design of real construction projects overseas.

AWARDS & RECOGNITIONS

- 1. "Merit in Best Industrial Applications" in MSC-Asia Pacific ICT Award 2010
- 2. "Best of Industrial Applications" in MSC-Asia Pacific ICT Award 2005
- 3. "Best Engineering Award" at the 7th International Conference on Concrete Technology in Developing Countries (7th ICCT, October 5-8, 2004)

ESTEEM INNOVATION (ASIA) SDN BHD

(974803-A) 7A, Jalan Kenari 10, Bandar Puchong Jaya, 47100 Puchong, Selangor Darul Ehsan. Tel: (603) 8076 2788 Web: <u>www.esteemsoft.com</u> Email: sales@esteemsoft.com